DIVISION OF MATHEMATICAL AND PHYSICAL SCIENCES

MSc in Mathematics and the Foundations of Computer Science Report of the Examiners (2012-2013)

Part I

1. Results

Entries	19
Passed	7
Distinctions Awarded	10
Failed TT hurdle	1
Failed	1

2. Vivas

Seventeen candidates who submitted dissertations had vivas.

3. Number of scripts multiply marked

Each written assignment (mini-project) was marked by the lecturer for that course (who was therefore appointed as an assessor if he was not already an examiner) and was also marked by a $2^{\text {nd }}$ assessor and then moderated by the examiners. Each dissertation was marked by one reader, and then moderated by the examiners taking into consideration comments supplied by the dissertation supervisor.

4. Distribution of topics

Of the 35 topics available, the numbers taken were as follows:

Michaelmas Term	Passed	Failed
Algebraic Topology	1	0
Analytic Topology	0	0
Commutative Algebra	1	0
Introduction to Representation Theory	4	0
Lambda Calculus \& Types	4	0
Lie Algebras	1	0
Model Theory	2	0
Modular Forms	1	0
Algebraic Geometry	3	0
Applied Probability	5	0
Categories Proofs \& Processes	1	0
Communication Theory	3	0
Foundations of Computer Science	9	0
Graph Theory	3	0
Quantum Computer Science	8	0
Combinatorics	0	0
Machine Learning	1	0
Probability \& Computing		

Hilary Term	Passed	Failed
Algebraic Number Theory	1	0
Godels Incompleteness Theorems	1	0
Group Theory and an Intro to Character Theory	4	0
Homological Algebra	3	0
Infinite Groups	2	0
Representation Theory of Symmetric Groups	6	0
Axiomatic Set Theory	5	0
Concurrency	2	0
Automata Logic \& Games	4	2

Computational Algebraic Topology	2	0
Elliptic Curves	6	0
Probabilistic Combinatorics	5	0
Categorical Quantum Mechanics	2	1
Theory of Data \& Knowledge Bases	1	0

Trinity Term	Passed	Failed
Computational Number Theory	1	0
Combinatorial Geometry	4	0
Networks	2	0

5. Assessors

There were 43 assessors appointed to help with the examination. Of these, 2 were not required at all.
A. Changes in examination methods and procedures this academic year None

B. Changes in examining methods and procedures envisaged

None

Part II

35 courses were offered. 2 courses failed to attract any students. The performance was of a high standard, with 13 mini-project scripts receiving marks of 90 and above, 27 receiving 80 and above, 26 receiving 70 and above, 23 receiving 60 and above, 11 receiving 50 and above, and 3 failures. The overall standard of dissertations was very high this year. 2 were awarded a grade of 90 and above, 4 at 80 and above, 7 at 70 and above, 3 at 60 and above, 1 at 50 and above, and one fail.

The dissertation topics, which all had some (theoretical or practical) computing aspect to them, were as follows:-

- Rational Points on Varieties
- Intersection Types and the Inhabitation Problem
- Generalizing the Spectral Presheaf
- Structural Approximation for Metric Structures
- Permutation Modules of Brauer Algebras
- Combinatorial Auction with Externalities
- Three Valued Semantics and Abstraction-Renement in Model Checking
- Sheaf Cohomology and Exact Sequences for Quantum Non-locality and Contextuality
- Bismash products and group algebras
- On the structure of Specht modules over a eld of prime characteristic.
- On the topology of measurement contexts for asymmetric multipartite spin systems
- Fourier transforms for symmetric inverse semigroups
- Denibility using 3 variables in Monadic Logic of Order and Metric
- Optimal Revenue Mechanisms for Auctions
- Balanced routing of random calls in sparse networks
- Moment Maps on Symplectic Manifolds
- Categorical models for quantum mechanics
- Random Perfect Graphs

Each candidate showed a good knowledge of his or her chosen area in the oral examination.
V Flynn
A Jung
A Wilkie
B Coecke (Chairman)

